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Generative Adversarial Networks (part 2)
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A two-player game:
• 𝐺 tries to generate fake images that can fool 𝐷.
• 𝐷 tries to detect fake images.

[Goodfellow et al. 2014]
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Learning objective (GANs)
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• Training: iterate between training D and G with backprop.

• Global optimum when G reproduces data distribution.

G tries to synthesize fake images that fool D

D tries to identify the fakes

real or fake?

[Goodfellow et al., 2014]
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What has driven GAN progress?
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What has driven GAN progress?
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Samples from StyleGAN2 [Karras et al., CVPR 2020]



GANs evaluation (FID)
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Fréchet Inception Distance (FID)



GANs evaluation (FID)

pip install clean-fid
Daily downloads (July, 2022): 100
Daily downloads (Feb, 2023) :  20, 000
Total downloads:  2, 600, 000

[Parmar et al., CVPR 2022]

Clean-fid libraries for evaluating generative models



What has driven GAN progress?
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A. Loss functions 
B. Network architectures (G/D) 
C. Training methods
D. Data
E. GPUs
F. Funding



Which topics are easy to publish?
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Loss functions
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x

D real (0.9)

[Goodfellow et al. 2014]

fake (0.1)

G(z)

G

z

Random code Generator

D
Discriminatorfake image

real image

Learning objective (GANs variants)
min
G

max
f1,f2

Ez[f1(G(z))] + Ex[f2(x)]

EBGAN, WGAN, LSGAN, etc
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Other divergences?

Different choices of f1 and f2 correspond to different divergence measures:

from [Mohamed & Lakshminarayanan 2017]

• Original GAN —> JSD
• Least-squares GAN —> Pearson chi-squared divergence

min
G

max
f1,f2

Ez[f1(G(z))] + Ex[f2(x)] f1 = −f
f2 = f

Convenient choice
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Other divergences?

Jensen-Shannon, original GAN

Reverse KL — mode seeking, intractable

Wasserstein

Earth-Mover (EM) distance 
/ Wasserstein distance
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Wasserstein GAN
[Arjovsky, Chintala, Bottou 2017]

wGAN GP [Gulrajani et al., 2018]: 

Gradient penalty (GP)
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Lipschitz continuity
|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|



Spectral Normalization
[Miyato, Kataoka, Koyama, Yoshida 2018]

+ Lipschitz discriminator regularization (c.f. Wasserstein GAN)

• W is the weight of one layer in the discriminator
• 𝜎(𝐴) (spectral norm) is the largest singular value of A 

(If A is a square matrix, the largest eigenvalue)
• Effect:  limit the amount of changes each layer introduces

σ(ŴSN ) = 1
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Better objectives? optimizers?

[“Are all GANs Created Equal?”, Lucic*, Kurach*, et al. 2018]
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Original GAN loss/Hinge Loss/Least Square Loss 
+ R1 gradient penalty (use 0 rather than 1)



Network architectures
& Training methods
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Better Architectures!
DCGAN

[Radford, Metz, Chintala 2016]
StyleGAN

[Karras, Laine, Aila 2019]
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DCGAN
[Radford, Metz, Chintala 2015]

+ Convnet

also see LAPGAN [Denton*, Chintala*, Szlam, Fergus 2015],
which used a convnet 
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DCGAN
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[Radford, Metz, Chintala 2015]



DCGAN
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[Radford, Metz, Chintala 2015]



Progressive GAN: Better Training Scheme!

+ Coarse-to-fine
+ Progressive 

training

Computer vision can help quality: Gaussian Pyramid (HW1)
30

[Karras, Aila, Laine, Lehtinen 2018]



Progressive GAN: Better Training Scheme!
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[Karras, Aila, Laine, Lehtinen 2018]



[Karras, Aila, Laine, Lehtinen 2018]

+ Coarse-to-fine
+ Progressive 

training

Computer vision can help speed: Gaussian Pyramid (HW1)

Progressive GAN: Better Training Scheme!
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StyleGAN: Quality+ Control

+ Multiscale “style” (noise)
+ AdaIN layers

[Karras, Laine, Aila. CVPR 2019]
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• batch/instance normalization: 

x: input feature

w: style code

MLP

input 
feature x

β(w)

γ(w)

style code w

BN(x) = γ
(x− µ(x)

σ(x)

)

+ β

AdaIN(x) = γ(w)
(x− µ(x)

σ(x)

)

+ β(w)



[Karras, Laine, Aila. CVPR 2019]
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StyleGAN: Quality+ Control



StyleGAN2 and StyleGAN3
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Analyzing and improving individual layers

Weight 
Modulation

Layers

Alias-free layers

https://arxiv.org/abs/1912.04958

https://arxiv.org/abs/2106.12423



Data
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Data alignment
• Work well for well-aligned objects and landscapes. 

37
See more details in Appendix of Progressive GANs [Karras et al., ICLR 2018]



Aligned vs. unaligned data

Real images from aligned FFHQ
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StyleGAN2 samples

Photo credit: StyleGAN2 [Karras et al., CVPR 2020]



Aligned vs. unaligned data

Real images from unaligned CelebA
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StyleGAN2 samples

Photo credit: William Peebles (UC Berkeley)



Data are Expensive

FFHQ dataset: 70,000 selective post-processed human faces

Months or even years to collect the data,
along with prohibitive annotation costs.

ImageNet dataset: millions of images from diverse categories
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Generated samples of StyleGAN2 (Karras et al.)
using only hundreds of images
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GANs Heavily Deteriorate Given Limited Data



Discriminator Overfitting



Data Augmentation

43

Data augmentation: enlarge datasets without collecting new samples.
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How to Augment GANs?



#1 Approach: Augment reals only

Augment reals only: the same artifacts appear on the generated images.

Artifacts from Color jittering

Artifacts from Translation

Artifacts from Cutout (DeVries et al.)

Generated images



Augment 𝑫 only: the unbalanced optimization cripples training.

#2 Approach: Augment reals & fakes for 𝑫 only



Our approach (DiffAugment): Augment reals + fakes for both 𝐷 and 𝐺

#3 Approach: Differentiable Augmentation

Color

Translation

Cutout

Color

Translation

Cutout

fakes reals

Differentiable Augmentation for Data-Efficient GAN Training. Zhao et al., NeurIPS 2020



CIFAR-10 (unconditional GANs)

Differentiable Augmentation for Data-Efficient GAN Training. Zhao et al., NeurIPS 2020



ImageNet Generation (25% training data)
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Differentiable Augmentation for Data-Efficient GAN Training. Zhao et al., NeurIPS 2020



Low-Shot Generation
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100-Shot Interpolation

The smooth interpolation results suggest little overfitting of our method even given only 100 images
of Obama, grumpy cat, panda, the Bridge of Sighs, the Medici Fountain, the Temple of Heaven, and Wuzhen.

Differentiable Augmentation for Data-Efficient GAN Training. Zhao et al., NeurIPS 2020



Differentiable Augmentation for Data-Efficient GAN Training. Zhao et al., NeurIPS 2020



Data Augmentation for GANs

• Differentiable Augmentation for Data-Efficient GAN Training (DiffAugment). 
Zhao et al., NeurIPS 2020. 

• Training Generative Adversarial Networks with Limited Data. (StyleGAN2-
ADA). Karras et al., NeurIPS 2020. 

• On Data Augmentation for GAN Training. Tran et al., IEEE TIP, 2020.

• Image Augmentations for GAN Training. Zhao et al., arXiv, 2020.



StyleGAN2-ADA

Training Generative Adversarial Networks with Limited Data [Karras et al., NeurIPS 2020]



StyleGAN2-ADA

𝑟! = 0 no overfitting, decrease augmentation 
r=1 complete overfitting, increase augmentation 

Other metrics to consider: 

Adaptative data augmentation 

Training Generative Adversarial Networks with Limited Data [Karras et al., NeurIPS 2020]



Training methods
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Discriminator is still Overfitting
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Standard GAN training

Which pretrained models to use?

¨ zG

z

Dz ∼ Loss

VGG-16
(Classification)

Swin-T
(Detection)

ViT (CLIP)

ViT (DINO)Swin-T (MoBY)

Swin-T 
(Segmentation)

Trained from scratch

Off-the-shelf Models  

Ensembling Off-the-shelf Models for GAN Training. Kumari et al., arXiv 2021



Swin-T
(Detection)

ViT (CLIP)

ViT (DINO)Swin-T (MoBY)

Fake samples

82%
Real samples

Swin-T 
(Segmentation)

Model Selection

¨ zGz ∼

Off-the-shelf Models  Li
ne

ar
 P

ro
be

 A
cc

ur
ac

y

Swin-T 
(MoBY)

Swin-T
(Segmentation) ViT (CLIP) Swin-T 

(Detection) ViT (DINO)

VGG-16
(Classification)

VGG-16
(Classification)

Ensembling Off-the-shelf Models for GAN Training. Kumari et al., arXiv 2021
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ViT (CLIP)

Vision-aided GAN training
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Ensembling Off-the-shelf Models for GAN Training. Kumari et al., arXiv 2021
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Ensembling Off-the-shelf Models for GAN Training. Kumari et al., arXiv 2021



ViT (DINO)

Add 2nd Vision-aided discriminator
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Ensembling Off-the-shelf Models for GAN Training. Kumari et al., arXiv 2021
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Benefit with varying training samples
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Benefit with varying training samples
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Low-shot Generation with 100 samples 
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Faster Convergence with Projected GANs

Projected GANs Converge Faster. Sauer et al., NeurIPS 2021use a FastGAN generator (https://arxiv.org/abs/2101.04775)

Dashed blue arrows : 
1x1 conv 

with random weights

Dashed red arrows: 
3x3 conv 

with random weights



Combining Perceptual Loss and GAN Loss
Idea 1:  add them together (many papers did that. It works) 

Idea 2: Pre-trained features + trainable MLP layers
= Perceptual Discriminator

Image Manipulation with Perceptual Discriminators [Sungatullina et al. ECCV 2018]
Using multiple pre-trained models: Vision-aided GANs [Kumari et al., 2021]
Using random projection head: Projected GANs [Sauer et al., NeurIPS 2021]
Conditional discriminator: Enhancing photorealism enhancement [Richter et al., 2020] 



What has driven GAN progress?
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What has driven GAN progress?
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A. Loss functions 
B. Network architectures (G/D) 
C. Training methods
D. Data
E. GPUs



Thank You!

16-726, Spring 2023
https://learning-image-synthesis.github.io/
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